

BASICS

DASICS

A. Units for	Physical	Quantities
--------------	----------	------------

Base Units	Symbol	Unit
Length	l, x	Meter - m
Mass	<i>m</i> , <i>M</i>	Kilogram - kg
Temperature	Т	Kelvin - K
Time	t	Second - s
Electric Current	Ι	Ampere - A (C/s)
Derived Units	Symbol	Unit
Acceleration	а	m/s ²
Ang. Accel.	α	radian/s ²
Ang. Momentum	L	kg m ² /s
Ang. Velocity	ω	radian/sec
Angle	θ, φ	radian
Capacitance	С	Farad F (C/V)
Charge	Q, q, e	Coulomb C (A s)
Density	ρ	kg/m ³
Displacement	s, d, h	meter - m
Electric Field	Е	V/m
Electric Flux	Φ_e	V m
Electromotive Force (EMF)	Е	Volt - V
Energy	E, U, K	Joule J (kg m ² s ⁻²)
Entropy	S	J/K
Force	F	Newton - N (kg m/s ² = J/m)
Frequency	<i>f</i> , <i>v</i>	Hertz - Hz (cycle/s)
Heat	Q	Joule - J
Magnetic Field	В	Tesla (Wb/m ²)
Magnetic Flux	Φ_m	Weber Wb (kg m ² /A s ²)
Momentum	р	kg m/s
Potential	V	Voltage V (J/C)
Power	P, P	Watt - W (J/s)
Pressure	Р	Pascal - Pa (N/m ²)
Resistance	R	Ohm Ω (V/A)
Torque	τ	N m
Velocity	v	m/s
Volume	V	m ³
Wavelength	λ	meter - m
Work	W	Joule - J (N m)

3. Fundamental Physical Constants				C. Conversion factors and alternative units		
Base Units	Symbol	Unit			Unit	Description
Mass of electron	m _e	9.11×10 ⁻³¹ kg		Angle	° (degree)	$180^\circ = \pi$ rad
Mass of proton	mp	1.67×10 ⁻²⁷ kg		- mgie	(degree)	100 // 100
Avogadro Constant	NA	6.022×10 ²³ mol ⁻¹		Energy	Erg	CGS unit (g cm ² /s ²) 1 erg = 10^{-7} J
Elementary charge	е	1.602×10 ⁻¹⁹ C				
Faraday Constant	F	96,485 C/mol		Energy	Electron Volt	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Speed of light	С	$3 \times 10^8 \text{ m s}^{-1}$				CGS unit (g cm/s ² = erg/cm)
Molar Gas Constant	R	8.314 J mol ⁻¹ K ⁻¹		Force	Dyne	$1 \text{ dyne} = 10^{-5} \text{ N}$
Boltzmann Constant	k	1.38×10 ⁻²³ J K ⁻¹		Volume	Liter	$1 L = 1 dm^3$
Gravitation Constant	G	$6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$		D	D	1.D. 105.D.
Permeability of Space	μ_0	4π×10 ⁻⁷ N/A ²	1	Pressure	Bar	$1 \text{ Bar} = 10^{\circ} \text{ Pa}$
Permittivity of Space	ε_0	8.85×10 ⁻¹² F/m		Length	Angstrom	$1 \text{ Å} = 1 \times 10^{-10} \text{m}$

MATHEMATICAL CONCEPTS

A. Vector Algebra

1. Vector: Denotes directional character using (x, y, z)components fig 1 a. Unit vectors: i along x, j along y, k along z b. Vector $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$ c. Length of $A = |A| = \sqrt{A_x^2 + A_y^2 + A_z^2}$ 2. Addition of vectors A & B, add components: $\mathbf{A} + \mathbf{B} = (A_x + B_x)\mathbf{i} + (A_y + B_y)\mathbf{j} + (A_z + B_z)\mathbf{k}$ Sample Addition and Length Calculations: $|A| = \sqrt{9 + 16 + 9}$ A=3i+4j-3k $=\sqrt{34}=5.83$ $|\mathbf{B}| = \sqrt{4 + 36 + 25}$ B = -2i + 6j + 5k $=\sqrt{65} = 8.06$ A+B=i+10j+2k $|A+B| = \sqrt{1+100+4}$ $=\sqrt{105} = 10.25$ Note: $|A| + |B| \ge |A + B|$ 3. Multiply *A* & *B*: a. Dot or scalar product: $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}|\cos\theta =$ $(A_x B_x) + (A_v B_v) + (A_z B_z)$ Note: θ is the angle between *A* and *B*; $A \cdot B = 0$, if $\theta = \pi/2$ fig 2 Sample: Scalar product: A = 5i + 2jB = 3i + 5j $A \cdot B = 3 \times 5 + 2 \times 5 = 15 + 10 = 25$ $|A| = \sqrt{25 + 4} = \sqrt{29} = 5.385$ $|\mathbf{B}| = \sqrt{9 + 25} = \sqrt{34} = 5.831$

 $\cos\theta = \frac{A \cdot B}{|A||B|} = \frac{25}{5.385 \times 5.83} = 0.796$ $\theta = \cos^{-1}(0.796) = 37^{\circ} = 0.2\pi \text{ rad fig 3}$

 $C = A \times B = |A| |B| \sin \theta e$ θ – Angle between **A** and **B**, vector **e** is perpendicular to A and B i j k $\boldsymbol{A} \times \boldsymbol{B} = A_x A_y A_z$ $B_x B_y B_z$ Sample: Vector Product: $A = 2\mathbf{i} + \mathbf{j}$ $B = \mathbf{i} + 3\mathbf{j}$ i j k $A \times B = \begin{vmatrix} 2 & 1 & 0 \end{vmatrix} = (6 - 1) \mathbf{k} = 5\mathbf{k}$ 1 3 0 • If A and B are in x-y plane, $A \times B$ is along the +z direction • θ is the angle formed by AB: $\sin\theta = \frac{|C|}{|A||B|}$ **Given**: $|A| = \sqrt{5}$ $|B| = \sqrt{10}$ |C| = 5 $\sin\theta = 5/(\sqrt{5} \times \sqrt{10}) = 5/\sqrt{50} = 1/\sqrt{2}$ $< AB: \theta = 45^{\circ} = \pi/2$ radians c. The Right-Hand Rule gives the orientation of vector e fig 4 B. Trigonometry 1. Basic relations for a triangle fig 5 $\sin \theta = \frac{y}{r}$ Values Of sin, cos and tan $\theta \text{ rad } [\circ] \quad \sin \theta \quad \cos \theta \quad \tan \theta$ $\cos \theta = \frac{x}{r}$ 0 [0°] 0.00 1.00 0.00 π/6 [30°] 0.50 0.866 0.577 $\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$ π/4 [45°] 0.707 0.707 1.00 π/3 [60°] 0.866 0.50 1.732 $\sin^2 + \cos^2 = 1$ π/2 [90°] 1.00 0.00 00 2. Sinand Cos waves π [180°] 0.00 -1.00 0.00 fig 6 sin and cos waves 6

cosθ ····

b. Cross or Vector Product:

MATHEMATICAL CONCEPTS (cont.)

PHYSICS & MEASUREMENT

A. Understand Your Data

- 1. Vector vs. scalar a. Vector: Has magnitude and direction b. Scalar: Magnitude only, no direction
- 2. Number and unit
- a. Physical data, constants and equations have
 - numerical values and units
 - b. A correct answer must include the correct numerical value PLUS the correct unit
- 3. Significant figures (sigfig)
- a. The # of sigfigs reflects the accuracy of experimental data; calculations must accommodate this uncertainty
- b. For multiplication: The # of sigfigs in the final answer is limited by the entry with the fewest sigfigs c. For addition: The # of decimal places in the final answer
- is given by the entry with the fewest decimal places
- d. Rules for "rounding sigfigs"
 - If the last digit is >5, round up
- If the last digit is <5, round down
- If digit = 5, round up if preceding digit is odd
- 🗞 Samples:
 - 1.245 + 0.4 = 1.6 (1 decimal place)
 - $1.345 \times 2.4 = 3.2$ (2 sigfigs)

Units of basic variables

	time: second s	position: meter m	
I	mass: kilogram kg	volume: m ³	
l	density: kg/m ³	Temperature: K	
	velocity: m/s	acceleration: m/s ²	
	energy: Joule $J = kg m^2/s^2$	force: Newton N = kg m/s ²	

Pitfall: If the units are wrong, the answer is wrong!

Hint: Before doing the calculation:

- * Check all constants and variable units
- * Take special care if you derive the equation

4. Dimensional analysis

Verify that constants and variables in an equation result in the correct overall unit

Samples: The energy unit is Joules for kinetic, gravitational and Coulombic energy

• Kinetic: $K = \frac{1}{2}mv^2$

n kg, v in m/s Units of
$$K = \text{kg}$$

ITT

Gravitational potential energy:

$$U_g = m g h$$
 Constant: $g = 9.8 \text{ m/s}^2$
 m in kg, h in m

$$q_1 \cdots q_2$$

14

onstant:
$$1/4\pi\epsilon_0$$
; units are J m/C²

r in m, q_1 and q_2 in Coulomb

Units of $U_c = (J \text{ m/C}^2)C^2/m = J$ fig 14

5. Using Conversion Factors

 $U_{\rm c} = 1/(4\pi\epsilon_0) \frac{q_1 q_2}{r}$

- a. Purpose: Modify experimental data to match the units of constants and equations
- b. SI units: MKS (m-kg-s) and CGS (cm-g-s)
- c. Common English units: Foot, pounds, BTU, calories
- d. Conversion factors are obtained from an equality of two units
 - **Sample**: 100 cm = 1 m
 - This equality gives two conversion factors:

$$\frac{1m}{100cm}$$
 & $\frac{100cm}{1m}$

• Use the 1st factor to convert "cm" to "m"

Sample: 54 cm
$$\times \frac{1m}{100cm} = 0.54$$
 m

• Use the 2nd to convert "m" to "cm"

Sample: 2.3 m × $\frac{100cm}{1m}$ = 230 cm

B. Solve the Problem Strategically

- a. Two key issues:
 - 1. Understand the physics principles

2. Have a correct mathematical strategy

- b. Useful steps in problem solving:
 - 1. Prepare a rough sketch of the problem 2. Identify relevant physical variables, physical concepts and constants
 - Pitfall do not simply search for the "right" equation in your notes or text
 - 3. Describe the physics using a diagram, with mathematical appropriate symbols and a coordinate system
 - 4. Obtain the relevant physical constants Do you have all the essential data?
 - **O** Hint: You may have extra information
 - 5. The hard part: Derive or obtain a mathematical expression for the problem; use dimensional analysis to check the equation, constants and data
 - 6. The easy part: Plug numbers into the equation and use the calculator to obtain the numerical answer
 - 7. Check the final answer, using the original statement of the problem, your sketch and common sense; are the units & sign correct?

MECHANICS

m

m²

A. Motion along a Straight Line 1. Goal: Determine position, velocity, acceleration

3. Key Equations $r = v_{t+1} a_{t+2}$ - at

Equations:
$$x - v_i t + \frac{1}{2}at^2$$
 $v_f - v_i + \frac{1}{2}at^2$

B. Motion in Two and Three Dimensions

- 1. Goal: Similar to "A," with 2 or 3 dimensions 2. Key concept: Select Cartesian, polar or spherical coordinates, depending on the type of motion
 - Sample: A projectile is launched at angle 6 with v_{ri} ; how do we set up the problem?

Step 1. Define x as horizontal and y vertical **Step 2**. Determine initial v_{xi} and v_{vi} fig 16

Step 3. Identify a_x - Gravitational force $\Rightarrow a_y = -g$

Units of $U_g = \text{kg m}^2/\text{s}^2 = J$ fig 13

MECHANICS (continued)

Step 4. Identify a_v - No horizontal force $\Rightarrow a_x = 0$ Step 5. Develop x- and y-equations of motion $x = v_{ix}t + \frac{1}{2}a_{x}t^{2} = v_{i}t$

- C. Newton's Laws of Motion
 - 1. Goal: Examine force and acceleration

2. Key concepts: Newton's Laws:

- Law #1. A body remains at rest or in motion unless influenced by a force
- Law #2. Forces acting on a body equal the mass multiplied by the acceleration; force and acceleration determine motion
- Law #3. Every action is countered by an opposing action

m

3. Key equations:

a. Law #2: F = m a or $\Sigma F = m a$

Hint: Forces are vectors!

b. Types of forces: Body - gravity: $F_g = m g$

• **Surface** - friction: $= F_f = \mu F_n$

Sample: F_t exerted on object on a horizontal plane

 $F_f = \mu F_n = \mu F_g = \mu m g$ Net force = $F_t - F_f$ fig 17

Sample: Object on plane

inclined at angle θ ;

examine $F_g \& F_f$

 $F_n = F_\sigma \cos\theta = m g \cos\theta$

 $F_f = \mu \tilde{F}_n = \mu m g \cos\theta$

 $\dot{F}_t = m g \sin \theta$ fig 18

 $F_{12} = -F_{21}$ or $m_1 a_1 = -m_2 a_2$ Sample: Examine recoil of

bullet fired from a rifle

```
Rifle recoil = a(bullet) \times m(bullet)
```

D. Circular Motion fig 19

1. Goal: Examine body moving in a circular path; use 2-d polar coordinates: (r, θ)

Key variables:

- \checkmark Hint: For a full rotation, $s = 2\pi r = \text{circumference}$ of a circle of radius r
- 2. **Tangential** acceleration & velocity: $v_t = r\omega$; $a_t = r\alpha$; along path of motion arc
- 3. Centripetal acceleration: $a_c = \frac{v^2}{r}$; directed towards the center fig 19 Sample: Determine v_t at the Earth's equator

Equation: $v_t = r\omega$ **Data**: $r = 6.378 \times 10^6$ m

 $\omega = 2\pi \text{ rad/day};$ 1 day = 24 × 60 × 60 sec = 86,400 s **Convert \boldsymbol{\omega} to SI**: $\boldsymbol{\omega} = 2\pi \operatorname{rad/day} \times 1 \operatorname{day/86,400 s} =$ 7.3×10^{-5} rad/s

Calculate v_t:

 $v_t = r\omega = 6.378 \times 10^6 \text{ m} \times 7.3 \times 10^{-5} \text{ rad/s } v_t = 465 \text{ m/s}$

E. Energy and Work

1. Goal: Examine the energy and work associated with forces acting on an object

2. Key equations:

a. Kinetic energy: $\frac{1}{2}mv^2$; energy of motion

b. Work: Force acting over a distance

- For F(x): Work = $\int F(x) dx$
- For a constant force: $W = F d \cos \theta = F \times r$
- θ is the angle between the *F* and *r*
- *W* maximum for $\theta = 0$ (note: $sin(\theta = 0) = 1$)

QuickStudy c. **Power = Work/time**: $W = Power\Delta t$ or $\int P(t) dt$

d. $W_{\text{net}} = K_{\text{final}} - K_{\text{initial}}$; K is converted to work

- Sample: Determine the work expended in lifting a 50 kg box 10 m; given: $a = g = 9.8 \text{ m/s}^2$ **Equations**: $F = m g \Rightarrow W = m g d$ **Calculation**: $W = 50 \text{ kg} \times 9.8 \text{ m/s}^2 \times 10 \text{ m} = 4,900 \text{ J}$ F. Potential Energy & Energy Conservation 1. Goal: Use energy conservation to study the interplay of potential and kinetic energy
 - 2. Key Equations
 - a. **Potential energy**: Energy of position: U(r); gravitation (U = mgh), electrostatic ($U \alpha qq/r$)
 - b. E = K + U Conservative system: No external force Sample: Examine K & U for a launched rocket **Initial**: h = 0, therefore, U = m g h = 0

 $E = K_i = \frac{1}{2}m v_i^2$

Next, resolve into x and y components: $K_{xi} \& K_{yi}$ Note: K_r is constant during the flight

At max height: $K_v = 0$; U = $m g h = K_{xi}$ Final state: Rocket hits the

- G. Collisions and Linear Momentum fig 21 1. Goal: Examine momentum of colliding bodies
 - Hint: For 2-D or 3-D, use
- Cartesian components 2. Key Variables and Equations a. Types of collisions:
 - Elastic: Conserve energy
 - •Inelastic: Energy lost as heat or deformation
 - b. Relative motion and frames of reference: A body moves with velocity v in frame S; in frame S', the velocity is v'; if $V_{s'}$ is the velocity of frame S relative to S, then $v = V_{S'} + v'$

m

- c. Linear Momentum: p = m v
- d. Conserve K & p for conservative system (no external forces):

$$\Sigma \frac{1}{2} m v_i^2 = \Sigma \frac{1}{2} m v_f^2 \qquad \Sigma m v_i =$$

🗞 Sample 1-d problem: Two bodies collide, stick together and move away from the collision site fig 22 **Conservation of momentum:**

> $m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2)v_f$ m_2 v_1 v_2 m_1 before collision

 $m_1 m_2 \dots v_f$ after collision

- f. **Impulse:** $I = F\Delta t$ or $\int F(t)dt$
- g. Momentum change: $p_{fin} = p_{init} + I$

H. Rotation of a Rigid Object

- 1. Goal: Examine the rotation of a rigid body of a defined shape and mass
- 2. Key variables and equations:

Sample: Calculate the center of mass for a 1 kg

& a 2 kg ball connected by a 1.00 m bar
ball 1:
$$x_1 = 0.00$$
, $m_1 = 1$ kg; $m_1 x_1 = 0.00$ kg m
ball 2: $x_2 = 1.00$ $m_2 = 2$ kg; $m_2 x_2 = 2.00$ kg m
 $\Sigma m_i = 1$ kg + 2 kg = 3 kg

 $\Sigma m_i x_i = m_1 x_1 + m_2 x_2 = 0.00 + 2.00 = 2.00 \text{ kg } m$ $\Sigma m_i x_i = 2.00 kg m$

$$z_{cm} = \frac{-m_i m_i}{\Sigma m_i} = \frac{0}{3.00 kg} = 0.66 m$$

1 kg

Hint: The center of mass is nearer the heavier ball fig 23

0.33m

Note: Force F_n is normal to face A

center of mass 3

b. Moment of inertia:

 $I = \sum m_i r_i^2$, with r_i about the center of mass **along a** specific axis

 \bigcirc Hint: I functions as the effective mass for rotational energy and momentum

Sample: *I* for bodies of mass *m*: fig 24

Twirling thin rod of length, L

 $I = \frac{1}{12} m L^2$ Rotating cylinder of radius, R $I = \frac{1}{2} m R^2$

25

• **Special case**: Fluid at rest $P_1 - P_2 = \rho g h$

WAVE MOTION

A. Descriptive Variables

QuickStud

- 1. Types: Transverse, longitudinal, traveling, standing, harmonic a. General form for transverse traveling wave: y = f(x - vt) (to the right) or y = f(x + vt) (to the left)
 - b. General form of harmonic wave: $y = A\sin(kx \omega t)$ or $y = A\cos(kx \omega t)$
 - c. Standing wave: Integral multiples of $\frac{\lambda}{2}$ fit the length of the
 - oscillating material d. General wave equation: $\frac{d^2y}{dx^2} = \frac{1}{v^2} \frac{d^2y}{dt^2}$

 - e. Superposition Principle: Overlapping waves interact => constructive and destructive interference

Harmonic Wave Properties

Wavelength	λ (m)	Distance between peaks
Period	T(sec)	Time to travel one λ
Frequency	$f(\mathrm{Hz})$	$f = \frac{1}{T}$
Angular Frequency	ω (rad/s)	$\omega = \frac{2\pi}{T} = 2\pi f$
Wave Amplitude	Α	Height of wave
Speed	v (m/s)	$v = \lambda f$
Wave number	$k ({\rm m}^{-1})$	$k = \frac{2\pi}{\lambda}$

2. Sample: Determine the velocity and period of a wave with $\lambda = 5.2 \text{ m and } f = 50.0 \text{ Hz}$

quations:
$$v = \lambda f$$
 T

Data: $\lambda = 5.20 \text{ m}; f = 50.0 \text{ Hz}$

Calculations:
$$v = \lambda f = 5.20 \text{ m} \times 50.0 = 260 \text{ m}/$$

$$T = \frac{1}{f} = \frac{1}{50}$$
 Hz = 0.02 s

E

B. Sound Waves

1. Wave nature of sound: Compression wave displaces the medium carrying the wave R

2. General speed of sound:
$$v = \sqrt{\frac{D}{\rho}}$$

note: B = Bulk Modulus (measure of volume compressibility)

For a gas: $v = \sqrt{\frac{\gamma RT}{M}}$; note: $\gamma = \frac{C_p}{C_v}$ (ratio of gas heat capacities) Sample: Calculate speed of sound in Helium at 273 K

Helium: Ideal gas,
$$\gamma = 1.66$$
; $M = 0.004$ kg/mole
 $v = \sqrt{\frac{\gamma RT}{M}}$

$$= \sqrt{\frac{1.66 \times 8.314 \text{ kg m}^2/\text{s}^2 \times 273\text{K}}{0.004\text{kg}}}$$

- = $\sqrt{941,900 \text{ m}^2/\text{s}^2}$ = 971 m/s note: $\sqrt{}$ applies to the units 3. Loudness as intensity and relative intensity
- a. Absolute Intensity (I = Power/Area) is an inconvenient measure of loudness
- b. Relative loudness: **Decibel scale (dB)**: $\beta = 10 \log \frac{1}{L}$; I_0 is the threshold of hearing; $\beta(I_0) = 0$
- c. Samples: Jet plane: 150 dB; Conversation: 50 dB; a change in 10 dB represents a 10-fold increase in I
- 4. **Doppler effect**: The sound frequency shifts $\frac{J}{f}$ due to relative motion of source and listener; v_0 - listener speed; v_s - source speed; v - speed of sound

Key: Identify relative speed of source and listener

THERMODYNAMICS

A. Goal: Study of work, heat and energy of a system fig 36 Key Variables

Heat: Q	+Q added to the system		+Q added to the system	
Work: W	+W done by the system			
Energy: E	System internal E			
Enthalpy: H	H = E + PV			
Entropy: S	Thermal disorder			
Temperature: T	Measure of thermal E			
Pressure: P	Force exerted by a gas			
Volume: V	Space occupied			

QuickStudy

THERMODYNAMICS (continued)

Types of Processes			
Isothermal	$\Delta T = 0$	$\Delta E = 0, \ Q = W$ PV = constant	
Adiabatic	<i>Q</i> = 0	$\Delta E = -W$ $PV\gamma = \text{constant}$	
Isobaric:	$\Delta P = 0$	$W = P\Delta V,$ $\Delta H = Q$	
Isochoric	$\Delta V = 0$	$\Delta E = Q;$ W = 0	

B. Temperature & Thermal Energy 1. Goal: Temperature is in Kelvin, absolute temperature: $T(K) = T(^{\circ}C) + 273.15$ Note: T(K) is always positive; lab temperature must be converted from °C to Kelvin (K) Sample: Convert 35° C to Kelvin: $T(K) = T(^{\circ}C) + 273.15 = 35 + 273.15 =$ 308.15 K 2. Thermal Expansion of Solid, Liquid or Gas a. Goal: Determine the change in the length (L) or volume (V) as a function of temperature b. Solid: $\underline{\Delta L} = \alpha \Delta T$ c. Liquid: $\frac{\Delta V}{V} = \beta \Delta T$ d. **Gas**: $\Delta V = \frac{(T_2 - T_1)nR}{P}$ 3. Heat capacity: $C = \frac{Q}{\Delta T}$ or $Q = C \Delta T$ a. Special cases: C_p -constant P; C_v -constant V• Ideal Gas: $C_p = \frac{5}{2}R; C_v = \frac{3}{2}R; \gamma = \frac{C_p}{C_v} = \frac{5}{3} = 1.667$ b. **Carnot's Law**: For ideal gas: $C_p - C_v = R$ • $\Delta E = C_v \Delta T; \Delta H = C_p \Delta T$ •Exact for monatomic gas, modify for molecular gases Charles' Law Boyle's Law Pressure (Pa) Temperature (K) C. Ideal Gas Law; PV = nRT fig 37 1. Goal: Simple equation of state for a gas 2. Key Variables: P(Pa), $V(m^3)$, T(K), *n* moles of gas (mol); gas constant $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ Pitfall: Common errors in T, P or V units 3. Key Applications: a. $P \propto \frac{1}{V}$, T fixed: Boyle's Law

b. $P \propto T$, V fixed

c. $V \propto T$, P fixed: Charles' Law

d. Derive thermodynamic relationships

- **D.** Enthalpy and 1st Law of Thermodynamics 1. Goal: Determine Q, ΔE and W; W and Q depend on path; ΔE is a state variable, independent of path
 - 2. Guiding Principle:
 - a. 1st Law of Thermodynamics: $\Delta E = Q W$ •Key idea: Conservation of Energy b. Examine the *T*, *P*, *W* & *Q* for the problem
 - 3. Enthalpy: H = E + PV; $\Delta H = \Delta E + P\Delta V$ a. $\Delta H = Q$ for $\Delta P = 0$ (constant pressure)
 - b. Variable temperature: $\Delta H = \int C_p dT$ c. For constant C_p : $\Delta H = C_p \Delta T$ 4. **Work**: $W = \int P dV$
 - a. W depends on the path or process b. Ideal Gas, Reversible, Isothermal: $W = nRT \ln \frac{V_2}{V}$

```
c. Ideal Gas, Isobaric: W = P\Delta V
```

4. **Idealized** heat engine: **Carnot Cycle** fig 40 a. Four steps in the cycle: two isothermal, two adiabatic; for overall cycle: $\Delta E = 0$ and $\Delta S = 0$ b. Efficiency = $1 - \frac{T_{cold}}{T_{cold}}$

ELECTRICITY & MAGNETISM

6

Reflection and Refraction

47

Incident

Ray

142320695-m 0 CSBN-